References and Notes

- (1) Address correspondence to this author at the Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan.
- (a) J. E. McMurry and M. P. Fleming, J. Am. Chem. Soc., 96, 4708 (1974); (2)(a) J. E. McMurry and M. F. Freining, J. Am. Chem. Soc., **55**, 4706 (1974),
 (b) T. Mukaiyama, T. Sato, and J. Hanna, Chem. Lett., 1041 (1973); (c) S.
 Tyrlik and I. Wolochowicz, *Bull. Soc. Chim. Fr.*, 2147 (1973); (d) E. J. Corey,
 R. L. Danheiser, and S. Chandrasekaran, *J. Org. Chem.*, **41**, 260 (1976);
 (e) J. E. McMurry and L. R. Krepski, *ibid.*, **41**, 3929 (1976); (f) J. E. McMurry
- (a) K. B. Sharpless, M. A. Umbrecht, M. T. Nieh, and T. L. Flood, J. Am. Chem. Soc., 94, 6538 (1972).
- (4) Y. Fujiwara, R. Ishikawa, and S. Teranishi, Bull. Chem. Soc., Jpn., 51, 589 (1978)
- (5) Presented at the Spring Meeting of Chemical Society of Japan, Hiratsuka, Japan, 1976
- (6) B. Dorrer, E. O. Fischer, and W. Kalbfus, J. Organomet. Chem., 81, C20 (1974).
- (a) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, *Chem. Rev.*, **72**, 545
 (1972); (b) R. R. Schrock, *J. Am. Chem. Soc.*, **97**, 6577 (1975); (c) C. P. Casey and S. W. Polichnowski, *ibid.*, **99**, 6097 (1977). (7)

- (8) K. B. Sharpless, A. Teranishi, and J.-E. Bäckvall, J. Am. Chem. Soc., 99. 3120 (1977).
- (19) I. E. Felkin and P. Sarda, *Chem. Commun.*, 1065 (1969).
 (10) (a) J. E. McMurry and M. P. Fleming, *J. Org. Chem.*, **40**, 2555 (1975); (b) T. Fujisawa and K. Sugimoto, *Chem. Lett.*, 883 (1974); (c) S. M. Kupchan and M. Maruyama, *J. Org. Chem.*, **36**, 1187 (1971); (d) J. K. Kochi, D. M. Singleton, and L. J. Andrew, *Tetrahedron*, **24**, 3503 (1968); (e) Y. Takegami, *Y. Takegami*, *Y. Y. Takegami*, *Y. Takegami*, Y. Watanabe, I. Kanaya, and H. Masada, Bull. Chem. Soc. Jpn., 41, 158 (1968).
- (11) A. Brossi, Ed., "Organic Synthesis", Vol. 53, Wiley, New York, N.Y., 1973, p 48. (12) T. A. Magee, C. N. Matthews, T. S. Wang, and J. H. Wotiz, *J. Am. Chem.*
- Soc., 83, 3200 (1961). (13) C. S. Kraihanzel and F. A. Cotton, *Inorg. Chem.*, 2, 533 (1963). (14) E. O. Fisher and A. Maasbal, *Angew. Chem.*, *Int. Ed. Engl.*, 3, 580

- (14) E. O. Pister and A. Maasbal, Angew. Chem., Int. Ed. Engl., 5, 380 (1964).
 (15) L. E. Orgel, Inorg. Chem., 1, 25 (1962).
 (16) H. Meerwein and E. Bachner, J. Prakt. Chem., 152, 239 (1939).
 (17) D. F. Hoeg and D. I. Lusk, J. Organomet. Chem., 5, 1 (1966).
 (18) D. Emmons, Ed., "Organic Synthesis", Vol. 47, Wiley, New York, N.Y., 100 (1997). 1967, p 34. (19) M. S. Kharasch and M. Kleiman, *J. Am. Chem. Soc.*, **65,** 11 (1943).
- (20) G. A. R. Kon and G. W. Spickett, J. Chem. Soc., 2724 (1949).
- Oxidation of Long-Chain and Related Alcohols to Carbonyls by Dimethyl Sulfoxide "Activated" by Oxalyl Chloride¹

Anthony J. Mancuso, Shui-Lung Huang, and Daniel Swern*

Fels Research Institute and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122

Received December 21, 1977

Dimethyl sulfoxide "activated" by oxalyl chloride at low temperatures in methylene chloride reacts rapidly with alcohols to give alkoxysulfonium salts, convertible to carbonyls in high to quantitative yields upon addition of triethylamine. Oxalyl chloride is the most efficient and generally useful Me₂SO "activator" thus far reported. The mild, high yield oxidation of long-chain saturated, unsaturated, acetylenic, and steroidal alcohols to carbonyls utilizing Me₂SO "activated" by oxalyl chloride is described.

Long-chain aldehydes (in masked form) are of importance in biological systems, such as plasmalogens, found in many organs of the body, e.g., heart, muscle, liver, kidney, pituitary gland, and cerebellum white and gray matter.² In the synthesis of plasmalogens, long-chain saturated and unsaturated aldehydes are necessary intermediates.

No satisfactory and universally applicable method for the preparation of long-chain carbonyls by the mild, selective oxidation of the corresponding long-chain saturated and unsaturated alcohols has been reported. Earlier work³ involved the preparation of a sulfonate ester (mesylate or tosylate) of the alcohol followed by reaction with dimethyl sulfoxide (Me_2SO) at 160 °C for 5-10 min in the presence of sodium bicarbonate (yields 60-72%). The use of Me₂SO-acetic anhydride or Me₂SO-sodium bicarbonate at room temperature with the sulfonate esters was unsuccessful.

The oxidation of long-chain primary alcohols to aldehydes by the dipyridine-chromic anhydride complex was recently reported⁴ but a sixfold excess of oxidant to alcohol is required. Yields are good, however, and range from 83-94%. No evidence (by infrared) of cis-trans isomerization of double bonds was observed in the preparation of mono-, di-, or triunsaturated aldehydes. Isomerization of double bonds is observed when more acidic oxidizing agents are employed. $^{5-8}$

"Activated" Me₂SO has been used extensively by us to oxidize many classes of alcohols to carbonyls in excellent yields under mild conditions via the intermediate alkoxysulfonium salts.⁹⁻¹¹ In this paper we report our studies of "activated" Me₂SO as an oxidant for the mild, high-yield oxidation of long-chain saturated, unsaturated, acetylenic, and steroidal alcohols at low temperatures to carbonyls utilizing the newly discovered and most successful "activator" developed in our

laboratory, namely, oxalyl chloride.¹¹ The results were compared with those obtained at room temperature with pyridinium chlorochromate7 and pyridine-SO3-Me2SO,12 two other well-known oxidants, and Me₂SO "activated" by trifluoroacetic anhydride (TFAA).9,10

Results and Discussion

Oxalyl chloride reacts violently and exothermically with Me₂SO at room temperature; therefore successful "activation" of Me₂SO by oxalyl chloride requires the use of low temperatures (-60 °C) to form intermediate 1. The structure of intermediate 1 from oxalyl chloride and Me₂SO is unknown: intermediates 1a and 1b are both possible. Intermediate 1b

$$(\operatorname{Me}_{2}\operatorname{SOC-CC1}) \operatorname{Cl}^{-} \xrightarrow{-\operatorname{CO}_{2}, \operatorname{CO}} [\operatorname{Me}_{2}\operatorname{SC1}] \operatorname{Cl}^{-}$$

$$\operatorname{Ia} \qquad \qquad \operatorname{Ib}$$

is the same as that reported by Corey and Kim for the lowtemperature reaction of dimethyl sulfide with chlorine (Me₂S-Cl₂),⁶ also a useful intermediate in alcohol oxidations.

The oxidation of long-chain saturated and unsaturated alcohols by Me₂SO "activated" by oxalyl chloride is summarized in Table I, acetylenic alcohols are summarized in Table II, and steroidal alcohols are summarized in Table III. The TFAA "activated" Me₂SO oxidation of several long-chain saturated alcohols is summarized in Table IV.

The oxalyl chloride "activated" Me₂SO oxidation of longchain saturated alcohols to the corresponding aldehydes proceeds virtually quantitatively (Table I) and is limited only by the solubility of the alcohol in the solvent system

			Carl	oonyl yield	,%	
Alcohol	Registry no.	Conditions ^a	2,4-DNP	G]	LC >CHOH	Registry no. of >C=O deriv
1-Undecanol	112-42-5	А	99	100	0	112-44-7
1-Dodecanol	122 - 53 - 8	Α	99	100	0	112-54-9
1-Dodecanol		D	98	98	0.2	
1-Tetradecanol	112-72-1	Α	26	23	76	124 - 25 - 4
1-Tetradecanol		D	97	96	4	
1-Pentadecanol	629-76-5	А	25	24	75	2765-11-9
1-Pentadecanol		D	95	99	0.2	
1-Hexadecanol	36653-82-4	A (-35 °C)	79	80 ^b	20 ^b	629-80-1
1-Octadecanol	112-92-5	D	84	86 ^b	4 ^b	638-66-4
Olevl (cis)	143 - 28 - 2	А	97	98^{b}	26	2423-10-1
Elaidyl (trans)	506-42-3	A	97	98 ^b	$\overline{2}^{b}$	10009-79-7
Linolevl	506-43-4	·D	98	986	1.96	2941-61-9
Methyl ricinoleate	141-24-2	D	oil	79 ^b	20 ^b	3047-65-2
Citronellol	106-22-9	A	83	85	14	106-23-0
Geraniol	106-24-7	Ā	94	95	5	141-27-5
Farnesol	4602-84-0	D	88	92	8	19317-11-4
1.12-Dodecanediol	5675-51-4	Ā	98c,d	99c,d	ĩ	38279-34-4
4-Hydroxystearic acid	2858-39-1	D	80 <i>e</i>	50	1	00110-01-1
12-Hydroxystearic acid	106-14-9	D	75°			

Table I. Oxidation	of Long-Chain	Alcohols wit	h MesSO-	(COCI) of
	or houng onlying			10001/2

^a See Experimental Section. ^b Relative ratios. ^c Dialdehyde. ^d 1 molar equiv of Me₂SO-(COCl)₂ per hydroxy function. ^e Isolated keto acid. ^f Registry No.—Me₂SO, 67-68-5; (COCl)₂, 79-37-8.

Table II. Oxidation	of Acetylenic Al	cohols with DI	MSO-(COCl) ₂ , '	TEA, -60 °C

		C	Carbonyl yield, %			
			Gl	LC		
Alcohol	Registry no.	2,4-DNP	>C=0	>CHOH		
$HC = C(CH_2)_2 CH_2 OH$	5390-04-5	99.6	99.8ª	0.2		
$CH_3C \equiv CCH_2C(OH)HCH_3$	19780-36-4					
$CH_3(CH_2)_3C \equiv CCH_2OH$	1002-36-4	79	98.3^{b}	1.7		
$CH_3(CH_2)_2C \equiv C(CH_2)_2OH$	14916-79-1			90		
$CH_3(CH_2)_4C \equiv CCH_2OH$	20739-58-6	93	95°	5		
$CH_3(CH_2)_4C(OH)HC = CH$	818-72-4					

^a Registry no. 18498-59-4. ^b Registry no. 1846-67-9. ^c Registry no. 1846-68-0.

Table III. Oxidation of Steroidal Alcohols with Me ₂ SO-	
(COCl) ₂ , TEA, -10 °C	

Alcohol	Registry no.	Car- bonyl yield, % ^a	Registry no.
Dihydrocholesterol (cholestanol)	80-97-7	96	566-88-1
Cholesterol (5-ene)	57-88-5	95	601-54-7
Stigmasterol (5,22-diene)	83-48-7	95	51529-12-5
11α -Hydroxyprogesterone Testosterone	80-75-1 58-22-0	99 99	516-15-4 63-05-8

^a Isolated carbonyl.

 $(CH_2Cl_2-Me_2SO)$ at low temperatures. As the solubility decreases at the lower temperature (-60 °C) and with increasing chain length it is necessary to conduct the oxidation at -10 °C, the upper limit for the addition of the alcohol to 1. High yields of carbonyls are obtained, however, when a 100% excess of oxalyl chloride "activated" Me₂SO is used to ensure that the alkoxysulfonium salt of the alcohol forms at -10 °C even though a considerable amount of intermediate 1 is sacrificed. The longest straight-chain alcohol examined was 1-octade-canol (C-18). The oxalyl chloride-Me₂SO route to carbonyls is superior to TFAA-Me₂SO (Table IV), even when diiso-propylethylamine is used with the latter reagent.

The unsaturated lipid alcohols, oleyl (cis), elaidyl (trans), linoleyl (cis,cis-9,12-octadecadienol), and methyl ricinoleate,

Table IV. Oxidation of Long-Chain Alcohols with Me₂SO-TFAA (Procedure C)

Base	Carbonyl yield, %, 2,4-DNP
TEA	72
DIPEA	85
TEA	66
DIPEA	84
	Base TEA DIPEA TEA DIPEA

are converted to their corresponding carbonyls in high yield with no cis-trans isomerization of double bonds observed. The terpene alcohols, citronellol, and the two allylic alcohols, geraniol and farnesol, are also oxidized in good yields with no effect on the double bond systems.

The only diol examined gives an almost quantitative yield of dialdehyde when 1 equiv of "activated" Me_2SO per hydroxyl function is used (Table I).

Hydroxy acids can also be successfully oxidized to their corresponding keto acids (Table I).

Acetylenic Alcohols. Although the oxidation of unsaturated and allylic alcohols with the oxalyl chloride– Me_2SO reagent is very successful, oxidation of acetylenic alcohols is complex and the results are neither uniform nor understood (Table II). 1-Octyn-3-ol also fails to give any isolable carbonyl product when oxidized by TFAA– Me_2SO or pyridinium chlorochromate.⁷

Those acetylenic alcohols that can be successfully oxidized by our method can also be oxidized by other methods,^{4,7} but

Table V. Oxidation of Long-Chain Alcohols by Pyridinium Chlorochromate⁷ and Pyridine-SO₃-Me₂SO¹² at Room Temperature (25 °C)

Alcohol	Oxidant	Carbonyl yield, %
1-Tetradecanol	Pv·SO ₃ ·Me ₂ SO	42ª
1-Tetradecanol	PyHCrO ₃ ·Cl	69
1-Octadecanol	PyHCrO ₃ ·Cl	85
Citronellol	PyHCrO ₃ Cl	82^{b}
2-Octyn-1-ol	PyHCrO ₃ .Cl	84^{b}

^a Recovered alcohol (58%). ^b Taken from ref 7.

not in as high yields. The acetylenic alcohols which fail to yield carbonyl by our oxidation procedure have not been reported to yield carbonyls by other methods.

Steroidal Alcohols (Table III). The oxidation of steroidal alcohols by Me₂SO-N,N-dicyclohexylcarbodiimide (Moffatt oxidation) has been examined extensively¹⁴⁻¹⁶ and will not be discussed further. Oxalyl chloride-Me₂SO gives almost quantitative oxidation of cholesterol and stigma sterol without isomerization (5-en-3-one products). The absence of the 4en-3-one isomers was confirmed by the absence of the α,β unsaturated carbonyl band in the infrared spectrum of the products. Ergosterol gives a 90% yield of carbonyl products whose composition is not the same under three sets of presumably identical oxidation conditions. The 4,6-dien-3-one, 4,7-dien-3-one and 5,7-dien-3-one isomerization mixture is known to be light and moisture sensitive and extremely prone to isomerization. The 5,7-dien-3-one is very difficult to obtain regardless of the oxidation method. It has previously been reported in admixture with the 4,7-dien-3-one.¹⁷ The oxalyl chloride-Me₂SO oxidation has been used by us¹¹ to oxidize β,γ -unsaturated alcohols to the corresponding β,γ -unsaturated carbonyls without isomerization to the α,β -unsaturated carbonvls.

Comparison of Oxidation Methods. We used pyridinium chlorochromate⁷ (PyHCrO₃·Cl) to oxidize 1-tetradecanol and 1-octadecanol for comparison with the oxalyl chloride- Me_2SO and TFAA-Me₂SO procedures. Unoxidized alcohol is not recovered in this procedure and yields of the carbonyls are comparable but somewhat lower than with oxalvl chloride-Me₂SO. The pyridinium chlorochromate reagent has the advantage of being operable at room temperature, however, but its versatility, scope, and limitations have not been totally explored.7

Pyridine-SO₃-Me₂SO¹² at room temperature was also used as an oxidant by us; it does not give as good yields of longchain carbonyls as does oxalyl chloride-Me₂SO.

The results obtained in the oxidation of several long-chain alcohols by PyHCrO₃·Cl and Py-SO₃-Me₂SO are summarized in Table V.

Experimental Section

Melting points were determined with a Thomas-Hoover apparatus and are uncorrected. IR spectra were obtained using a Pye Unicam SP1000 spectrometer. A Varian Aerograph Series 2100 gas chromatograph with a flame-ionization detector and a 4 ft \times 0.125 in. column packed with 8% SE-30 on Chromosorb P was used in the analysis of oxidations of long-chain alcohols (C₈ or greater; N₂ was the carrier gas). Occasionally a 6 ft \times 0.25 in. column packed with 10% FFAP on Chromosorb P in a Varian A-90 P-3 gas chromatograph with a thermal conductivity detector was used: He was the carrier gas. Me₂SO was distilled from calcium hydride under reduced pressure and the heart cut was stored over Linde Molecular Sieves Type 3A in a sealed brown bottle. Purest grades of alcohols were purchased and purified, if necessary; purity exceeded 98% in most cases. Oxalyl chloride and other acid halides for "activation" of Me₂SO were freshly distilled and

stored over Linde Molecular Sieves Type 3A in sealed brown bottles under N₂. Trifluoroacetic anhydride, gold label, pyridinium chlorochromate, and pyridine-sulfur trioxide were used as received from Aldrich Chemical Co. Amines were distilled from calcium hydride or sodium, and the heart cuts were retained and stored over Linde Molecular Sieves Type 3A or sodium. Authentic samples of carbonyls were purchased. Methylene chloride was distilled from phosphorus pentoxide and stored over Linde Molecular Sieves Type 4A. Glassware was dried in an oven just before use. A sample of 1-pentyn-5-ol was generously supplied by Dr. Grant R. Krow, Temple University and a sample of linoleyl alcohol was generously supplied by Applied Science Laboratories, State College, Pa.

Oxidation of Alcohols to Carbonyls by Oxalyl Chloride-Me₂SO. Procedure A. General Procedure. A solution of CH₂Cl₂ (25 mL) and oxalyl chloride (1.0 mL, 11 mmol) was placed in a 100-mL four-neck round-bottom flask equipped with an overhead mechanical stirrer, a thermometer, a $CaSO_4$ drying tube, and two pressure-equalizing dropping funnels containing Me₂SO (1.7 mL, 22 mmol) dissolved in CH₂Cl₂ (5 mL) and the alcohol (10 mmol in 10 mL of CH₂Cl₂ or a minimum amount of CH₂Cl₂-Me₂SO to dissolve the alcohol), respectively. The Me₂SO was added to the stirred oxalyl chloride solution at -50 to -60 °C. The reaction mixture was stirred for 2 min and the alcohol was added within 5 min; stirring was continued for an additional 15 min. TEA (7.0 mL, 50 mmol) was added and the reaction mixture was stirred for 5 min and then allowed to warm to room temperature. Water (50 mL) was then added and the aqueous layer was reextracted with additional CHCl₂ (50 mL). The organic layers were combined, washed with saturated NaCl solution (100 mL), and dried over anhydrous MgSO₄. The filtered solution was concentrated in a rotary evaporator to 25 mL. A 5-mL solution was used for GLC analysis; a 10-mL portion was used for characterization of carbonyls as their 2,4-DNP derivatives. The remaining 10-mL portion was washed successively with dilute HCl (1%), water, dilute Na₂CO₃ (5%), and water and evaporated to dryness to give a slightly colored crude carbonyl which was frequently pure without further workup. IR and NMR spectra of the crude products were identical with those of authentic samples of the carbonyls. Melting points of crude derivatives agreed well with the literature values. In some cases, derivatives and carbonyls were recrystallized.

Procedure D. This procedure is identical to procedure A except (a) (COCl)₂ (2 mL, 22 mmol) and Me₂SO (3.4 mL, 48 mmol) were used and (b) the alcohol (10 mmol) was added at -10 °C and the reaction temperature was maintained for 15 min.

Oxidation of Alcohols to Carbonyls by TFAA-Me₂SO. This procedure has already been reported by us.9,10

Acknowledgment. This investigation was supported in part by Grants CA-12227 and 12218, awarded by the National Cancer Institute, DHEW, and the Samuel S. Fels Fund.

References and Notes

- (1) Presented in part before the Division of Organic Chemistry, 174th National
- Meeting of the American Chemical Society, Chicago, III., August 1977. E. Klenk and H. Debuch in "Progress in the Chemistry of Fats and Other Lipids", Vol. 6, R. T. Holman, W. O. Lundberg, and T. Malkin, Ed., Per-Lipids", Vol. 6, H. I. Holman, W. O. Lundberg, and I. Malkin, Ed., Pegammon Press, Oxford, England, 1963, p 1.
 (3) V. Mahadevan, F. Phillips, and W. O. Lundberg, *Lipids*, 1, 183 (1966).
 (4) A. J. Valicenti and R. T. Holman, *Chem. Phys. Lipids*, 17, 389 (1976).
 (5) E. J. Corey and C. U. Kim, *J. Am. Chem. Soc.*, 94, 7586 (1972).
 (6) E. J. Corey and C. U. Kim, *Tetrahedron Lett.*, 2647 (1975).
 (7) E. J. Corey and J. W. Suggs, *Tetrahedron Lett.*, 2647 (1975).
 (8) K. B. Sharpless and K. Akschi, *J. Am. Chem. Soc.*, 97, 5927 (1975).

- (8)
- K. B. Sharpless and K. Akashi, J. Am. Chem. Soc., 97, 5927 (1975).
 K. Omura, A. K. Sharma, and D. Swern, J. Org. Chem., 41, 957 (1976).
- S. L. Huang, K. Omura, and D. Swern, J. Org. Chem., 41, 3329 (1976).
 (a) K. Omura and D. Swern, *Tetrahedron*, accepted for publication; (b) D. Swern, K. Omura, and S. L. Huang, paper presented before IUPAC Con-
- gress, Tokyo, September 1977. (12) J. R. Parikh and W. von E. Doering, J. Am. Chem. Soc., 89, 5505 (1967).
- (13) S. L. Huang, K, Omura, and D. Swern, Synthesis, 297 (1978).
- (a) K. E. Pfitzner and J. G. Moffatt, *J. Am. Chem. Soc.*, 87, 5661 (1965);
 (b) *ibid.*, 87, 5670 (1965);
 (c) A. H. Fenselau, E. H. Hamamura, and J. G. Moffatt, *J. Org. Chem.*, 35, 3546 (1970);
 (d) J. G. Moffatt, *ibid.*, 36, 1909 (14)(1971).
- W. W. Epstein and F. W. Sweat, Chem. Rev., 67, 247 (1967).
- J. G. Moffatt, In "Oxidation", Vol. 2, R. L. Augustine and D. J. Trecker, Ed., Marcel Dekker, New York, N.Y., 1971, p 1. (16)
- (17) I. Dory and G. Szabo, Acta Chim Acad. Sci Hung., 19, 243 (1959).